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Abstract. Aggregation phenomena of elementary particles into clusters is one of the most
fascinating and challenging problems of statistical physics. Here we adopt a stochastic approach
for the modelling of these phenomena. More precisely, we formulate the problem as follows
(which we shall refer to as the ‘cavity’ method): given a population ofN atoms partitioned into
p groups, how does a new atom eventually connect to any of thesep groups forming a new
partition ofN + 1 atoms into a certain number of groups? Depending on this local ‘logic’ of
pattern formation, the asymptotic structure of groups (in the thermodynamic limitN →∞) can
be quite different; also the group size distributions may vary widely.

1. Introduction

The purpose of this work is to study the nucleation–aggregation phenomena of elementary
particles into clusters at the statistical physics level. Although there are many alternative
approaches to this question, such as mean-field population-balance Schmoluchowski
equations (see, e.g., [1, 2]), here we adopt a microscopic approach for the modelling of these
phenomena, which avoids the need for certain unknown parameters such as coagulation and
fragmentation rates. No attempt will be made to relate these models to their equivalent
mean-field level because this study, if possible, deserves a paper in itself.

More precisely, we formulate the problem as follows: nucleation–aggregation
phenomena consist of problems where ‘elementary’ particles (atoms) are given the
opportunity of forming ‘assemblies’ (groups or clusters). Thinking a little bit about this
problem amounts to asking for the ‘connection politics’ of a new atom when it ‘sees’ a
certain previously formed group pattern ofN similar atoms. In this approach, nucleation
of a cluster occurs when the inserted atom does not connect at all, whereas aggregation
takes place when it joins any existing cluster. Depending on this local ‘logic’ of pattern
formation, the asymptotic structure of groups (in the thermodynamic limitN → ∞) can
be quite different; also the group size distributions may vary widely. These asymptotic
studies are the main purpose of this work. First, we illustrate our ideas on three ‘monomer
addition’ models which, in fact, are three different and basic ‘connection logics’. In these
simplistic models, the additional atom, if it connects, connects to a single group: clusters
grow by the addition of single particles. In section 6 we shall give more general models
in the same vein where clusters themselves are allowed to aggregate, which should match
with more realistic situations. We shall make use of the notion of generating functions from
combinatorics [3–5].
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2. Three monomer addition models

Assume a population ofN atoms is partitioned intop distinct non-empty groups. There can
be at least one group of sizeN , and at mostN groups of size one. LetNj, j = 1, . . . , N
denote the number of groups of sizej in such a partition. Of course, if all this is to be
consistent:

N∑
j=1

jNj = N (1)

and

N∑
j=1

Nj = p (2)

expressing (respectively) the conservation of the number of atoms (groups).
Next we shall focus our attention on the number of partitions ofN atoms intop groups.
Let σN(p), p = 1, . . . , N denote this quantity.
In order to clarify what these numbers really are, we now discuss the fate of an additional

atom added to this structure (in the transitionN → N+1). This new atom may not ‘connect’
to any of thep existing groups, thereby forming a new group: it nucleates a new cluster.
This new atom connects preferentially to (no more than) one of thep existing groups; the
question is which group?

Remark 1.Note that the hypothesis that connection, if established, concerns a single group
is very restrictive, although, as we shall see, far from elementary. In this sense, these
aggregation models are what one may call monomer addition since clusters grow by the
addition of single particles only—there is no aggregation of two (or more) larger clusters
together. We shall indicate in section 6 how to include aggregation of clusters which appears
to be more realistic in practice.

In order to answer the above question, let us make more precise the state-space of our
models’ class.

Given a population ofN atoms, letPN denote the number of groups in the partition,
and let(S1(N), . . . , SPn(N)) be the group size vector. Of course

PN∑
p=1

Sp(N) = N .

Next, in the transitionN → N+1, consider the (random) eventCN = p that connection
CN of the additional atom is established with groupp ∈ {1, . . . , PN }: the indicator function
1CN=p will thus be one if its argument is true and zero otherwise. Lack of connection will
be represented by the eventCN = 0.
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We then have the obvious following state-space evolution equations:

S1(N + 1)
...

Sp(N)
...
...

SPN+1(N + 1)
0
...


=

PN∑
p=1



S1(N)
...

Sp(N)+ 1
...

SPN (N)

0
0
...


1CN=p +



S1(N)
...

Sp(N)
...

SPN (N)

1
0
...


1CN=0 (3)

PN+1 = PN 1CN=p + (PN + 1) 1CN=0 . (4)

Equation (3) indicates how to increment the group size vector whenever a connection
is established, whereas equation (4) is concerned with the (non-decreasing) number of such
groups.

Thus adopting probabilistic language for a while, we consider the following three random
self-consistent connection rules of the additional atom giving the probability, sayQ, that
connection is established with groupp:

(i) Q(CN = 0) = 1
2, Q(CN = p) = 1/(2PN), p = 1, . . . , PN

(ii) Q(CN = 0) = 1/(PN + 1), Q(CN = p) = 1/(PN + 1), p = 1, . . . , PN
(iii) Q(CN = 0) = 1/(N + 1), Q(CN = p) = Sp(N)/(N + 1), p = 1, . . . , PN for

which, respectively,
(i) Q(CN = 0) = 1

2, Q(CN > 0) = 1
2

(ii) Q(CN = 0) = 1/(PN + 1), Q(CN > 0) = PN/(PN + 1)
(iii) Q(CN = 0) = 1/(N + 1), Q(CN > 0) = N/(N + 1).

Thus lettingQ(PN = p) df= QN(p) denote the probability that the (random) number of
groups isp given a population ofN atoms, it follows from the state-space equation (4) that

(i) QN+1(p) = 1
2QN(p − 1)+ 1

2QN(p)

(ii) QN+1(p) = 1/(p + 1)QN(p − 1)+ p/(p + 1)QN(p)

(iii) QN+1(p) = 1/(N + 1)QN(p − 1)+N/(N + 1)QN(p).

The answer to our question therefore lies in the three recurrences onσN(p) we shall
consider here (omitting normalization constants), skipping from probabilistic language to
the one of enumeration
(i) σN+1(p) = σN(p − 1)+ σN(p)
(ii) σN+1(p) = σN(p − 1)+ pσN(p)
(iii) σN+1(p) = σN(p − 1)+NσN(p)

(5)

with common boundary conditions

σ1(1) = 1

σN(0) = 0 ∀N > 1

σN(p) = 0 ∀p > N + 1 ∀N > 1 .

(6)

Thus:
In model (i), the additional atom is equally likely to connect or not. If it connects, it

forms a new group with all existingp groups with no preference for any of them.
In model (ii), all existingp groups are equally likely to form a new group (or not)

with the additional atom, independently of the sizes of thesep groups. ‘Randomness’ is
maximal.



1852 T Huillet

In model (iii), the connection is more likely to occur with a group of large size: the
additional atom behaves gregariously and moves preferentially towards larger groups.

In models (ii) and (iii), connection is very likely to occur compared to model (i). The
number of distinct groups is thus intuitively expected to be much smaller than in situation (i)
as the number of atoms goes to infinity. One of the problems is to quantify this observation.

Recurrences (5) identify the number sequences under investigation, namely
(i) σN(p) =

(
N−1
p−1

)
the binomial coefficients,

(ii) σN(p) = SN(p), the second kind of Stirling numbers,
(iii) σN(p) = |sN(p)|, the absolute values of the first kind of Stirling numbers.
Let us also introduce the numbersσN =

∑N
p=1 σN(p), giving the total number of

partitions ofN atoms, which are, respectively,
(i) σN = 2N−1

(ii) σN = BN , the Bell numbers
(iii) σN = N !
Also observe that

σN(p)
df= #{q ∈ {1, . . . , σN } : PN(q) = p} p = 1, . . . , N (7)

where #{· · ·} is to be read as ‘the cardinal of the set. . .’.

Remark 2.Let us show how to generate such sequencesσN(p), p = 1, . . . , N , which
follows from the recurrences (5) in a straightforward way.

(i) The sequence:σN(p) =
(
N−1
p−1

)
, p = 1, . . . , N , can be obtained from theN th iterate

(power) of the operator

A : (x1, x2,, . . . , xp, . . .)→ (x1, x1+ x2, . . . , xp−1+ xp, . . .)
acting on the initial condition:X0

df= (1, 0, . . . ,0, . . .). This operator is bounded iǹ1

(the set of summable series with non-negative entries), with‖A‖1 = 2. Its spectrum is
purely continuous and identified with the unit disc of the complex plane, centred at(1, 0).
Therefore, its spectral radius is 2.

(ii) The sequenceσN(p) = SN(p), p = 1, . . . , N , can be obtained from theN th iterate
of the operator

A : (x1, x2,, . . . , xp, . . .)→ (x1, x1+ 2x2, . . . , xp−1+ pxp, . . .)
acting on the initial conditionX0. This operator is unbounded iǹ1. Its spectrum is purely
discrete and identified with the set of natural numbersN.

(iii) Concerning the third sequenceσN(p) = |sN(p)|, p = 1, . . . , N , it can be reached

from the action onX0 of the ordered left-product operatorAN
df= ∏N

p=1Bp, with

Bp : (x1, x2,, . . . , xq, . . .)→ (px1, px1+ x2, . . . , pxq−1+ xq, . . .).
Clearly, for this operator sequence limN→∞ ‖AN‖1/N

1 = ∞.

3. Elementary arithmetic: partition functions

Inspecting equations (1) and (2), and asking for the number of ways, sayqN(p), one may
partitionN atoms intop groups under the constraints (1) and (2) yielding

qN(p)
df= #

{
Nj > 0, j = 1, . . . , N :

N∑
j=1

jNj = N,
N∑
j=1

Nj = p
}
. (8)
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It is part of standard theory [4] that this sequence can be reached from the infinite product
representation of the partition function, in the formal variablesθ andγ

1+
∑
N>1

θN
N∑
p=1

qN(p)γ
p =

∏
n>1

(
1− γ θn)−1

.

Let us now form the generating function8N(γ ) of the sequenceσN(p), p = 1, . . . , N ,
namely

8N(γ )
df=

N∑
p=1

σN(p)γ
p

and the partition function

8(γ, θ)
df= 1+

∑
N>1

θN

N !
8N(γ ). (9)

Particularizing to the three models of interest yields, respectively, for models (i), (ii),
(iii)

8(γ, θ) = 1+ γ

γ + 1

(
eθ(1+γ ) − 1

)
(10)

8(γ, θ) = eγ (e
θ−1) (11)

8(γ, θ) = (1− θ)−γ = e−γ log(1−θ) . (12)

A closer inspection of the sequenceσN(p) shows that it may be written as

σN(p) =
∑∗

N,p
�(N1, . . . , NN) (13)

where the complex numbers�(N1, . . . , NN), are to be understood as the degeneracy of the
aggregation systems, that is, the total number of ways one can partitionN atoms intop
groups, withNj being the number of groups of sizej, j = 1, . . . , N .

In identity (13), the ‘star-sum’ is a notational convenience for
∗∑
N,p

�(N1, . . . , NN)
df=

∑
N1,...,NN>0∑

j Nj=p,
∑
j jNj=N

�(N1, . . . , NN)

(there areqN(p) terms in this sum).
Now let (cN)N>1 be a non-decreasing sequence of integral numbers, to be interpreted

later as the number of micro-states forN particles occupying the same single-particle state.
Define the double sequence of real numbers

wl,N
df= 1

l!

(
cN

N !

)l
l > 1 N > 1 .

Next introduce

�̃(N1, . . . , NN)
df=

N∏
j=1

wNj ,j =
N∏
j=1

c
Nj
j

Nj !(j !)Nj
df= 1

N !
�B(N1, . . . , NN)

N∏
j=1

c
Nj
j

where�B(N1, . . . , NN) is the Boltzmann degeneracy.
It is easy to see that�(N1, . . . , NN) can be expressed in terms of�̃(N1, . . . , NN) and

for a particular choice of(cN)N>1 in our three models, namely
(i) cN = N ! and�(N1, . . . , NN) = p!, �̃(N1, . . . , NN) = p!/

∏N
j=1Nj !
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(ii) cN = 1 and�(N1, . . . , NN) = N !, �̃(N1, . . . , NN) = N !/
∏N
j=1Nj !(j !)Nj

(iii) cN = (N − 1)! and�(N1, . . . , NN) = N !, �̃(N1, . . . , NN) = N !/
∏N
j=1Nj !j

Nj .

Now let us discuss how one skips from the formal variables(γ, θ) to the thermodynamic
ones which are identified as the chemical potential and inverse of the temperature(µ, β).

Let the level-N partition function be

ZN(λ)
df=

N∑
p=1

σN(p)e
−λp = 8N

(
e−λ

)
with λ

df= βµ. Here β stands for the inverse of the ‘temperature’,µ for the ‘chemical

potential’, so thatγ
df= e−βµ is the thermodynamic ‘fugacity’.

Also, the correspondence between the formal variableθ andβ is θ
df= e−β . Therefore,

in physics, one works with the grand canonical partition functions

Z(λ, β)
df= 8(e−λ, e−β

)
.

Equation (9) can therefore be reformulated in an equivalent manner as

Z(λ, β) = 1+
∑
N>1

e−βN

N !
ZN(λ). (14)

4. Group number asymptote

We now discuss in some detail the group number variables in the thermodynamic limit
N →∞.

Define the probabilities that the number of groups isp by

P (PN = p) df= PN(p) df= σN(p)

σN
.

Also define theP means and variances byE(PN) andD2(PN).

4.1. Central limit results

It follows from standard results [6–8], that the following central limit theorem holds:

lim
N→∞

P

(
PN −E(PN)
D(PN)

< α

)
= Erf(α). (15)

Some details on this are now recalled in three different situations:
(i) The sequenceσN(p), p = 1, . . . , N presents only one mode and constitutes the

Pascal’s triangle for which it is well known that

E(PN) = 1+ N − 1

2
D2(PN) = N − 1

4
.

Thus
1

N
E(PN)

N→∞→ 1

2
df= α0 .

Also recall thatσN = 2N−1 which thus grows exponentially fast.
(ii) Concerning the sequenceσN(p), p = 1, . . . , N , it can be shown [7] thatE(PN) =

BN+1/BN−1 and thatD2(PN) = BN+2/BN−(BN+1/BN)
2, so that the asymptotic evaluation
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of these quantities amounts to the asymptotic evaluation of the Bell number behaviour for
which a saddle-point method [9] gives

1

N
logBN = logN − log logN − 1+O(log logN/ logN).

ThusBN ∼ (N/ logN)N which grows faster than exponentially withN (compare with
(i)).

This provides the evaluationE(PN) ∼ N/e logN .
Also, it has been shown that the sequenceσN(p), p = 1, . . . , N presents only one

mode, with

p∗(N)
df= Arg max

p

σN(p) ∼ N

e logN

(the mean), so that

α(N)
df= p∗(N)

N

N→∞−→ 0
df= α0 .

The most probable group density in model (ii) is thus zero, corroborating an earlier
observation of section 2.

(iii) Concerning the sequenceσN(p), p = 1, . . . , N , one can show [8] thatE(PN) ∼
logN and thatD2(PN) ∼ logN .

WhereasσN = N ! ∼ NNe−N
√

2πN grows much faster than exponentially withN , by
Stirling’s formula, and also faster than in model (ii).

The sequenceσN(p), p = 1, . . . , N has only one mode [8], withp∗(N)
df=

Arg max
p

σN(p) ∼ logN , so that

α(N)
df= p∗(N)

N

N→∞−→ 0
df= α0 .

The most probable group density in model (iii) also goes to zero, but slower than in
situation (ii).

4.2. Very large deviation result

Concerning large deviation to the central limit theorem, we have the ‘very’ large deviation
result, strongly reminiscent of multifractal theory,
∀α > α0 ∈ [0, 1]:

lim
N→∞

#

{
q ∈ {1, . . . , σN } :

PN(q)

N
> α

}1/ logσN

= ef (α)+1 (16)

or

lim
N→∞

P

{
PN

N
> α

}1/ logσN

= ef (α) (17)

where it remains to interpret the rate functions−16 f (α) 6 0 which will be shown to be
concave on the unit interval. They attain their maximum, zero, atα0. Moreoverf (1) = −1.

Remark 3.In equation (17) the scaling factor 1/N of the random variablePN is not of the
same order of magnitude as 1/ logσN , at least in situations (ii) and (iii). Deviation from
normality is thus extremely unlikely to occur, which justifies the term ‘very’ large deviation.



1856 T Huillet

We now come to the proof of this assertion.
If this result is to hold true, one must indeed show the standard large deviation result

[10],

lim
N→∞

P

{
P̃N

logσN
> α

}1/ logσN

= ef (α)

for the new scaled variablẽPN
df= PN logσN/N .

Then define the Laplace transform

αN(λ)
df= Ee−λP̃N .

Let PN,λ(q)
df= e−λP̃N (q)/(σNαN(λ)), q = 1, . . . , σN to be an exponential family of

probability measures, withPN,0(q) = 1/σN, q = 1, . . . , σN .

Here P̃N (q)
df= PN(q) logσN/N, q = 1, . . . , σN .

Next, introduce the Kullback–Leibler information functions

f̃N (λ)
df= −

σN∑
q=1

PN,λ(q) logσN

(
PN,λ(q)

PN,0(q)

)
.

Clearly, thef̃N (λ)
df= fN(F ′N(λ)) are concave functions and̃fN(λ) = λF ′N(λ)− FN(λ),

with

FN(λ)
df= − logσN αN(λ)

so thatf̃N (λ) andFN(λ) are dual functions in the Legendre sense.
It follows from [10] thatf (α) is the Legendre transform of

F(λ) = lim
N→∞

FN(λ)

if such a limit exists.
Now observe thatαN(λ)

df= Ee−λP̃N = ∑N
p=1(σN(p)/σN)σ

−λp/N
N is a linear convex

combination of exponentials, so thatFN(λ) is a sequence of analytic concave functions.
Moreover,

FN(λ) ∼
λ→−∞

λ+ 1 and FN(λ) ∼
λ→+∞

λ/N + (1− logσN σN(1)).

The convergenceF(λ) = limN→∞ FN(λ) is now straightforward; indeed, for anyλ < 0,
FN(λ) 6 FN+1(λ) 6 λ+1 and for anyλ > 0, 0> FN(λ) > FN+1(λ). As a result,FN(λ) is
a bounded from above (below) non-increasing (non-decreasing) sequence forλ < 0 (λ > 0).
Therefore, it converges, pointwise, to a concave function ofλ. Moreover, it follows from
the concavity ofFN(λ) thatFN(λ) = sup

λ′6λ
FN(λ

′). Therefore convergence is uniform, which

guarantees that the limitF(λ) is continuous, possibly not differentiable in most interesting
cases. Phase transitions certainly may occur [11]. The concave rate functions of the large
deviation result (16) meet the Legendre equation

f (α) = inf
λ
(λα − F(λ)) .

This completes the proof.
Some details on the three models are available, namely
(i) In this situation,

FN(λ)
df= − log2N−1 αN(λ) = − log2N−1

(
2−λ

(
1+ 2−λ

2

)N−1)
.
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So thatF(λ) = limN→∞ FN(λ) = − log2((1+ 2−λ)/2). We therefore have the usual bell-
shape (∩) for the (symmetric) and concave Legendre transform ofF(λ), which is explicitly
checked to bef (α) = log2((1− α)α−1/2αα).

It can be noticed thatf (0) = f (1) = −1 andf
(

1
2

) = 0.
(ii) and (iii), in these cases, no such explicit computation exists, but the limit rate

functions are right-sided [12], in the sense that one only exhibits the ‘right-hand side of the

previous bell’; this is becauseα(N)
df= p∗(N)/N N→∞−→ 0 = α0, in both cases (ii) and (iii).

It can be checked thatf (0) = 0 andf (1) = −1 in both cases. Here we have the signature
of a phase transition.

5. Most probable cluster size distributions

This section relies upon standard work in statistical physics, see for example [13, 14]. It
addresses the important practical problem of determining the group size distributions of the
aggregates.

Looking at equations (9), (16), (18), in the thermodynamic variables(β, µ) yields

Z(βµ, β) = 1+
∑
N>1

1

N !

N∑
p=1

∗∑
N,p

�β,µ(N1, . . . , NN)

with

�β,µ(N1, . . . , NN) = e−β(N+µp−log�(N1,...,NN )/β) .

Defining the entropy

Sβ,µ(N1, . . . , NN) = log�β,µ(N1, . . . , NN)

we have that the most probable group size distributions are the ones of maximal entropy.
Thus, we are left with the minimization program: minimize over the vector

(N1, . . . , NN) the quantity

−Sβ,µ(N1, . . . , NN) = β(N + µp)− log�(N1, . . . , NN)

with the constraints (1) and (2).
Putting

pj
df= Nj

p
j = 1, . . . , N

the standard Lagrange multipliers method allows us to reformulate this problem as the
following. Minimize
N∑
j=1

pj

(
β(j + µ)+ log

(
pj
j !

cj

)
+ λ1+ λ2j

)
=

N∑
j=1

pj log

((
pj
j !

cj

)
eβ(j+µ)+λ1+λ2j

)
under the constraints

∑N
j=1pj = 1,

∑N
j=1 jpj = N/p

df= 1/α, with α ∈ [0, 1].
Therein,(λ1, λ2) are the Lagrange multipliers.
The minimum is reached when the argument of the logarithm is one, so thatp∗j =

cjeβ(j+µ)−λ2j /j !jeλ1, j = 1, . . . , N , where the Lagrange multipliers are determined by the
constraints.

As N,p → ∞, while the group density is held fixedp/N = α, the first Lagrange
multiplier is given by the first constraint. It is

eλ1 =
∑
j>1

cjeβ(j+µ)−λ2j

j !
= e−βµz(β + λ2)
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where

z(β)
df=
∑
j>1

cj
e−βj

j !

for the three different choices of the sequencecj given in section 3.
For the second Lagrange multiplier,

∑N
j=1 jp

∗
j = 1/α gives the characterization

−α d

dβ
logz(β + λ2) = 1 . (18)

Finally,

p∗j = −
cj

z(β + λ2)

e−(β+λ2)j

j !
j > 1

q∗j
df= jαp∗j = −

cj
d

dβ z(β + λ2)

je−(β+λ2)j

j !
j > 1

are, respectively, the most probable cluster-size distributions and probability of finding a
particle in a cluster of sizej , whereλ2 is determined by (18).

Detailing the equations for the three different models yields (i)z(β) = e−β/
(
1− e−β

)
,

(ii) z(β) = ee−β − 1, (iii) z(β) = − log
(
1− e−β

)
where it should be noted from (14) that

z(β) = logZ(0, β).
In case (i), the solutions are explicitly computable from the relationα = 1− θ .
They are

p∗j = α(1− α)j−1 j > 1

(the geometrical Pascal distribution)

q∗j = α2(1− α)j−1 j > 1 .

In case (ii), the distributions are Poisson-like

p∗j =
1

eθ − 1

θj

j !
j > 1

q∗j = e−θ
θj−1

(j − 1)!
j > 1

whereθ is the (unique) positive solution toα = (1− e−θ )/θ .
Finally, in case (iii)

p∗j = −
1

log(1− θ)
θj

j
j > 1

q∗j = (1− θ)θj−1 j > 1

whereθ is the (unique) solution of the interval(0, 1) to α = −[(1− θ)/θ ] log(1− θ).

6. Cluster–cluster aggregation

We now come to the question of including cluster aggregation into our models.
We first introduce a combinatorial tree structure which shall prove useful for our purpose.

SupposeN atoms (or nodes) have been labelled as{1, . . . , N}. A labelled increasing tree is
a rooted simply connected tree for which labels along any branch from the root are forced to
go in increasing order. The enumeration of such trees has been undertaken in [15]. Suppose
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there are(cN)N>1such trees withN atoms. Then introduce a generating function for this
sequence, sayφ(θ), as

φ(θ)
df=
∑
N>1

cN

N !
θN .

The main result of these authors is thatφ(θ) is the unique solution to the autonomous
ordinary differential equation

φ̇(θ) = g(φ(θ)) (19)

with initial conditionφ(0) = 0, and for variousg such that

g(θ) = 1+
∑
k>1

gk

k!
θk

where(gk)k>1is any sequence of integral numbers.
The function g is called the branch generating function. It describes locally the

variability of the edges pointing outwards from any node of the tree.
The general unordered increasing tree (or non-plane tree) is thus defined recursively by

appending an atom to a set of similar sub-trees. This amounts to choosingg(θ) = eθ , for
which gk = 1, k > 1. Note that for such trees, there is no order distinction between the sub-
trees dangling from their common root. Ordered trees, or plane trees, could be obtained in a
similar way, when considering the modified functional equation (19) withg(θ) = 1/(1−θ),
for which gk = k!, k > 1: for such trees, there arek! ways to arrangek sub-trees, taking
‘chirality’ into account. Therefore, modifying the ‘branch’-generating functiong gives
rise to a variety of tree structures implicitly defined by (19). For example, unordered
binary trees are enumerated while usingg(θ) = 1+ θ2/2 in the above functional equation,
whereas ordered binary trees can be obtained fromg(θ) = 1+ θ2. Linear increasing trees
are enumerated usingg(θ) = 1+ θ and constitute the simplest such structures.

If an explicit solution for the ordinary differential equation (19) exists, we shall call the
modelsolvable. For example, choosing forg the following particular functions:

1+ θ, (1+ θ)p(with integerp > 2), 1+ θ2, 1+ θ2/2!, 1/(1− θ), eθ

yields, respectively, forφ(θ),

expθ − 1,−1+ [1− (p − 1)θ ]−1/(p−1), tanθ,
√

2 tan(θ/
√

2), 1−√1− 2θ,

− log(1− θ).
Considering a forest of increasing trees leads to the generating function eφ(θ), the Taylor

coefficient of which, sayσN , counts the number of forests of increasing trees that one can
form with N atoms, relaxing the connectedness condition for trees.

Next consider the bivariate ‘marked’ exponential generating function

8(γ, θ)
df= eγφ(θ) . (20)

Developing

8(γ, θ)
df= 1+

∑
N>1

θN

N !
8N(γ )

with

8N(γ )
df=

N∑
p=1

σN(p)γ
p .



1860 T Huillet

In this interpretation,σN(p) counts the number of forests made ofp increasing trees
that one can form withN atoms.

We now come to our cluster aggregation models.
Differentiating (20) with respect toθ gives from (19)

∂θ8(γ, θ) = γ φ̇(θ)8(γ, θ) = γ
∑
k>0

gk

k!
(φ(θ)k8

(
γ, θ)

)
.

This leads to the following recurrences for the function sequence(8N(γ ))N>1:

8N+1(γ ) = γ
∑
k>0

gk

k!
∂(k)γ 8N(γ )

where∂(k)γ indicates derivation with respect toγ (k times).
In terms of the coefficientsσN(p) describing8N(γ ), this yields the recurrences

σN+1(p) = σN(p − 1)+
N−(p−1)∑
k=1

ap,kσN(p + k − 1) (21)

with

ap,k = gk

k!

k−1∏
j=0

(p + k − j − 1).

In an alternative way

σN+1(p) = σN(p − 1)+
N∑
q=p

bp,qσN(q) p = 1, . . . , N N > 1

with

bp,p+r = ap,r+1 = gr+1

(r + 1)!

r∏
j=0

(p + j) r > 0 p > 1 . (22)

Recurrences (21) constitute the announced generalization of (5).
We now interpret recurrences (21) in terms of nucleation–aggregation phenomena, as

described in section 2.
Indeed, in such extended models the additional atom in the transitionN → N + 1,

when it sees a cluster situation withp groups, may connect tok groups simultaneously,

k = 1, . . . ,min(K, p), whereK
df= max(k > 1 : gk 6= 0) is the (possibly infinite) order

of the branch generating functiong(θ). This k-connection (fusion) occurs with transition
probability

QN,p(k)
df= ap,k(

1+∑N−(p−1)
k=1 ap,k

) .
By doing so, the number of groups shifts fromp to (p − k + 1) and decreases as soon

ask > 2 (cluster–cluster aggregation).
Of course, nucleation occurs with probability

QN,p(0)
df= 1(

1+∑N−(p−1)
k=1 ap,k

)
and still remains possible.

In other words, equation (4) of section 2 has to be replaced by

PN+1 = PN 1KN=0+ (PN −KN + 1) 1KN>0
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where KN is the random variable giving the number of connections with transition
distribution

Q(KN = k | PN = p) = QN,p(k) k > 0.

The coefficientsap,k entering in the definition of these probabilities are now easy to
interpret: they are the number of ways that the inserted atom will selectk distinguishable
(resp. indistinguishable) connection groups out ofp possible groups, as soon asgk = k!
(resp.gk = 1).

Remark 4.As a result of (21) and (22), the sequenceσN(p), p = 1, . . . , N , can be obtained
from theN th iterate (power) of the unbounded operator in`1:

A : (x1, . . . , xp, . . .)→
(
x1, . . . , xp−1+

∑
q>p

bp,qxq, . . .

)
(23)

acting on the initial conditionX0
df= (1, 0, . . . ,0, . . .).

Example 1.Let us give some examples that show that models (ii) and (iii) are actually
particular cases of this new interpretation.

(ii) g(θ) = 1+ θ for which g1 = 1, gk = 0, k > 2 leads toφ(θ) = expθ − 1 and
8(γ, θ) = eγ (e

θ−1) and from (21) we get (equation 5(ii))

σN+1(p) = σN(p − 1)+ pσN(p).
(iii) g(θ) = eθ for which gk = 1, k > 1 leads toφ(θ) = − log(1 − θ) and

8(γ, θ) = (1− θ)−γ .
Recurrences (21) obtained while insertinggk = 1, k > 1 in ( 22) constitute an alternative

interpretation to (equation 5(iii)). In this case, connection with any number of pre-existing
groups is allowed to take place.

(iv) g(θ) = (1+ θ)2 for which g1 = g2 = 2, gk = 0, k > 3 leads toφ(θ) = θ/(1− θ)
and8(γ, θ) = eγ θ/(1−θ):

σN+1(p) = σN(p − 1)+ 2pσN(p)+ p(p + 1)σN(p + 1) p = 1, . . . , N .

(v) g(θ) = 1+ θ2 for which g1 = 0, g2 = 2, gk = 0, k > 3 leads toφ(θ) = tanθ and
8(γ, θ) = eγ tanθ :

σN+1(p) = σN(p − 1)+ p(p + 1)σN(p + 1).

7. Concluding remarks

This paper presents a statistical physics approach to the modelling of nucleation–aggregation
phenomena of atoms in the thermodynamic limitN →∞.

Three different models have been developed within the same statistical framework,
showing that small causes can produce large effects. These models were designed to
represent simple aggregation by single-particle adjunction (monomer addition). These
examples have been shown to be entirely solvable. The main reason for this solvability is
that in (4) both nucleation and aggregation transition probabilities were independent of the
cluster size distribution that exists. This will, for example, not be the case if one is to model
an aggregation process for which the inserted atom is more likely to connect with a group
of small size, simply because state-space equations (3) and (4) become strongly dependent
on one another, for these ‘anti-social’ atoms! Therefore more work is needed to understand
the equilibrium structures that will prevail.
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It has also been shown, however, using the ‘cavity method’ approach discussed herein,
how to include in aggregation models the possibility for an atom to connect simultaneously
to more than one group at the same time. In this situation the number of groups in the
transitionN → N + 1 may decrease because clusters themselves can aggregate.

Real experimental data have been related to model (ii) by Cohen in [16–18]. In these
papers, the author claims to model simultaneous aggregation and fragmentation phenomena,
when we only see nucleation and aggregation in such models, as has been shown. It is our
opinion that more work is needed to include fragmentation in this language which remains
an open problem.
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